(Contents continued from outside cover)

RAKHEJA, S., STIHARU, I., ZHANG, H. and BOILEAU, P.É., Seated occupant interactions with seat backrest and pan, and biodynamic responses under vertical vibration	651
FLEURY, G. and MISTROT, P., Numerical assessment of fore-and-aft suspension performance to reduce whole- body vibration of wheel loader drivers	672
STEIN, G.J., MÚČKA, P. and CHMÚRNY, R., Preliminary results on an x-direction apparent mass model of human body sitting in a cushioned, suspended seat	688
HINZ, B., RÜTZEL, S., BLÜTHNER, R., MENZEL, G., WÖLFEL, H.P. and SEIDEL, H., Apparent mass of seated man-First determination with a soft seat and dynamic seat pressure distributions	704
NAWAYSEH, N. and GRIFFIN, M.J., Effect of frequency, magnitude and direction of translational and rotational oscillation on the postural stability of standing people	725
MORIOKA, M. and GRIFFIN, M.J., Magnitude-dependence of equivalent comfort contours for fore-and-aft, lateral and vertical whole-body vibration	755
MATSUMOTO, Y., OHDO, K. and SAITO, T., Dynamic and subjective responses of seated subjects exposed to simultaneous vertical and fore-and-aft whole-body vibration: The effect of the phase between the two single-axis components	773
HINZ, B., BLÜTHNER, R., MENZEL, G., RÜTZEL, S., SEIDEL, H. and WÖLFEL, H.P., Apparent mass of seated men-Determination with single- and multi-axis excitations at different magnitudes	788
RÜTZEL, S., HINZ, B. and WÖLFEL, H.P., Modal description-A better way of characterizing human vibration behavior	810
HUANG, Y. and GRIFFIN, M.J., Effect of voluntary periodic muscular activity on nonlinearity in the apparent mass of the seated human body during vertical random whole-body vibration	824
MANSFIELD, N.J. and MAEDA, S., Comparison of the apparent masses and cross-axis apparent masses of seated humans exposed to single- and dual-axis whole-body vibration	841